Article Text

Download PDFPDF
Diamedica Draw-over Vaporiser: bench testing the UK Defence Anaesthesia System in the deployed environment
  1. Sebastian Bourn1,2,
  2. O Rylah2,3,
  3. T Fishenden2 and
  4. D Connor2,4
  1. 1Anaesthetics, Royal Infirmary of Edinburgh, Edinburgh, UK
  2. 2Royal Navy, London, UK
  3. 3Anaesthetics, Southampton University Hospitals NHS Trust, Southampton, UK
  4. 4Anaesthetics, QA Hospital, MDHU Portsmouth, Portsmouth, UK
  1. Correspondence to Surg Cdr Sebastian Bourn, Anaesthetics, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; s.bourn{at}nhs.net

Abstract

Introduction The Diamedica Draw-over Vaporiser 2 (DDV2) is the sevoflurane vaporiser used by the UK Defence Medical Services to provide deployed volatile general anaesthesia. The Defence Anaesthesia System employs the DDV2 with a turbine-driven ventilator as a ‘push-over’ vaporiser, a modification from the manufacturer’s design. We investigated sevoflurane delivery at varying minute volumes (MVs), vaporiser settings and temperatures in this configuration.

Methods A range of DDV2 settings (1%, 2%, 3%, 4% and induction) and MVs (2, 4, 6 and 8 L/min at 12 ventilations per minute) were tested at two ambient temperatures (20 and 30±3°C) over 30 min. A supplemental experiment, simulating anaesthesia during damage control surgery, was also completed, where he DDV2 was set to 2% with a 6 L/min MV for 90 min.

Results In both experiments, two distinct phases of sevoflurane delivery were noted, a ‘wash-in phase’ followed by a ‘maintenance period’. The wash-in phase normally lasted less than 5 min. During the maintenance period at low MVs and vaporiser settings the DDV2 delivered a constant output, while at higher MVs and settings vapour output fell predictably. At 20±3°C, using DDV2 settings likely to be encountered in clinical practice, sevoflurane delivery was within 20% of that set. Higher vaporiser settings, MVs and temperatures resulted in greater variation between vaporiser setting and agent delivery. This variation is explained by the incomplete temperature compensation of the DDV2.

Conclusions The DDV2 functions predictably at a range of settings, MVs and temperatures. Anaesthetic delivery in the defence anaesthesia configuration is like that previously described in the draw-over configuration. The equipment was found to be reliable and robust. This experimental work supports the continued use of the Defence Anaesthesia System for the delivery of and training in deployed general anaesthesia.

  • ANAESTHETICS
  • Adult anaesthesia
  • Paediatric anaesthesia

Data availability statement

Data are available upon reasonable request.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

Data are available upon reasonable request.

View Full Text

Footnotes

  • Contributors SB: overall content guarantor, experimental conduct, reporting, data acquisition, analysis and interpretation, write-up lead. OR: experimental conduct, reporting, data acquisition, analysis and interpretation, write-up. TF: experimental lead, conduct, reporting and design, acquisition of data, write-up. DC: planning, conception and design.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.